Trees and Discrete Subgroups of Lie Groups over Local Fields
نویسنده
چکیده
Let K be a locally compact field and G a simple AT-group, G = G(K). A discrete subgroup T of G is called a lattice if G/F carries a finite G-invariant measure. It is a uniform (or cocompact) lattice if G/T is compact and nonuniform otherwise. When the jRf-rank of G is greater than one, Margulis [Ma, Z] proved that T is arithmetic, establishing the conjecture of Selberg and PiatetskiShapiro. This remarkable work left open the case of rank one groups. SLi{U) contains continuous families of lattices (the Teichmüller spaces) and in particular it contains nonarithmetic lattices. By the Mostow rigidity theorem (cf. [Ml]), SLi{R) is essentially the only real simple Lie group which allows this phenomenon. Some other real rank one groups are known to have nonarithmetic lattices: Gromov and Piatetski-Shapiro [GPS] showed that SO(n, 1) have such lattices (earlier it was shown by Makarov and Vinberg for small n), Mostow [M2] constructed nonarithmetic lattices in SU(2,1 ), and together with Deligne [DM] also in SU(3,1 ). For the other rank one real groups: SU(n, 1) (n > 4), Sp(n, 1) and F4 the problem is still open. A related problem is the congruence subgroup problem, which asked: Given T arithmetic, are all its finite index subgroups congruence subgroups? Serre [SI] conjectured that T has the congruence subgroup property (CSP) if and only if rank^(G) > 2. The affirmative part of this conjecture was proved to a large extent (but mainly for nonuniform lattices; see [RI, R2] for precise results and history). Less is known for arithmetic lattices in real rank one groups: It is easy to prove that none of the arithmetic lattices in PSL2(R) = SO(2,1)° has CSP. The same holds for PSL2(C) = SO(3,1) (see [SI] for the nonuniform case and [LI] for the uniform case). For SO(n, 1), general n, it is known only for some of the lattices (Millson [Mi]). Similarly, Kazdhan [Ka] showed that some lattices in SU(n, 1) do not have CSP. Again, nothing is known for Sp(n, 1) and ƒ% which are of rank one but have Kazdhan property (T) like groups of higher rank. In this note we will describe results on the structure of lattices in rank one groups over locally compact nonarchimedean fields, as well as some
منابع مشابه
Kazhdan and Haagerup Properties in Algebraic Groups over Local Fields
We prove some results about solvable Lie algebras endowed with a reductive action of a fixed Lie algebra. The first application consists in proving that if g is a Lie algebra over a local field of characteristic zero whose “amenable radical” is not a direct factor, then g contains a subalgebra which is isomorphic to the semidirect product of sl2 by either a nontrivial irreducible representation...
متن کاملHaagerup Property for Algebraic Groups over Local Fields
We classify, among the linear algebraic groups over a local field of characteristic zero, those that have the Haagerup property (also called a-(T)-menability). Our method relies essentially on a discussion on the existence of a subgroup isomorphic, up to a finite covering, to the semidirect product of SL2 by an irreducible representation, or a one-dimensional central extension of an even-dimens...
متن کاملHarmonicity and Minimality of Vector Fields on Lorentzian Lie Groups
We consider four-dimensional lie groups equipped with left-invariant Lorentzian Einstein metrics, and determine the harmonicity properties of vector fields on these spaces. In some cases, all these vector fields are critical points for the energy functional restricted to vector fields. We also classify vector fields defining harmonic maps, and calculate explicitly the energy of t...
متن کاملTopological simplicity, commensurator super-rigidity and non-linearities of Kac-Moody groups Appendix by P. Bonvin: Strong boundaries and commensurator super-rigidity
— We provide new arguments to see topological Kac-Moody groups as generalized semisimple groups over local fields: they are products of topologically simple groups and their Iwahori subgroups are the normalizers of the pro-p Sylow subgroups. We use a dynamical characterization of parabolic subgroups to prove that some countable Kac-Moody groups with Fuchsian buildings are not linear. We show fo...
متن کاملLocal Functional Equations for Submodule Zeta Functions Associated to Nilpotent Algebras of Endomorphisms
We give a sufficient criterion for generic local functional equations for submodule zeta functions associated to nilpotent algebras of endomorphisms defined over number fields. This allows us, in particular, to prove various conjectures on such functional equations for ideal zeta functions of nilpotent Lie lattices. Via the Mal’cev correspondence, these results have corollaries pertaining to ze...
متن کامل